

BEC Feed Solutions

Nutritional Role of Phosphorus

Phosphorus (P) is present in all cells in the body

- > Essential for many digestive and metabolic processes, including conversion of feed into energy and building and repair of body tissues.
- > Second most plentiful mineral in the body after Calcium (Ca)
- > 75-85% of P is in the skeleton
 - ❖ 7% P @ Birth
 - * 9% P@ 1 year
 - ❖ 9-12% @ Maturity
 - ❖ 6.3g P / kg Lwt
- > Ca & P constantly being drawn from the bone reserves and replaced.
- > P deficiency results in osteomalacia (Peg Leg)
- > P transported in the blood stream
- > Saliva contributes more P to the rumen than the feed eaten.
- > Rumen micro organisms have a requirement for P distinct from the requirements of the animals tissues.

- > Decreased P results in decreased feed intake, without an effect on Dry Matter (DM) digestibility. (not understood why)
- > Decreased feed intake results in:-
 - Decreased growth rate
 - Decreased milk yield
 - Decreased reproduction rate
 - Decreased calf growth rate
- > P absorbed mainly in the small intestine
- > P absorption depends on:-
 - * P content of the diet
 - * Ca: P ratio
 - ❖ P bioavailability

Phosphorus Loss

- > Faecal, 400kg animal looses 6 8g per day.
- > Faecal P consists of dietary P (feed) and endogenous P (saliva)
- > Milk 1 litre milk contains 0.95g of P
- > P deficiency leads to decreased milk volume, not decreased P content.

Phosphorus / Energy / Protein

- > Nitrogen (N), P and Energy levels in pastures generally move in parallel.
- > P intakes lowest prior to spring storms. When protein and energy are also at their lowest.
- > There is a misconception that P deficiency is most acute at this time.
- > P deficiency is most acute in the growing season when plant P levels are at their highest. During this time protein and energy levels are also at their highest.
- > Supplementation with P, N, or Energy will only be positive, if that nutrient is the first limiting nutrient.

- > Low quality diet, protein limits live weight performance.
- > Energy without protein has little effect
- > Energy and protein are too limiting to get a response from P
- > P actually depressed performance

- > During the growing season on legume based pastures, P can be the first limiting nutrient even though P levels are at their highest.
- > N will be the first limiting nutrient on native pastures as early as mid to late summer.
- > When faecal N drops below 1.3%, growth stops. Therefore never feed P when faecal N is below 1.3%.
- Necessary to address any N and/or Energy deficits before additional P supplementation is beneficial.
- > P supplementation during the dry season leads to decreased growth rate. Thought to be due to the energy expended to metabolize the P, with no benefit to offset the loss.

Phosphorus Requirements

- > Maintenance requirement for P increases with the size of the animal
- > Increased growth leads to increased demand for P
 - * 3.3g P / 250g/d Lwg
- > Lactation 0.95g P / It milk
 - ❖ @ 80% absorption = 1.2g dietary P / It.
 - ❖ @ 5lt/day = 6g/day.
- > P requirement increase during pregnancy to support growth of foetus and placenta.
 - * 30kg calf = 210g P
 - ❖ Placenta = 10 g P
- > 90% of this 210g is needed during the last 90 days of pregnancy.
 - 1.5g/day until month 7
 - 4g/day in month 9

Supplementary phosphorus needs (gP / head / day) without bone demineralization

Liveweight (kg)	Diet quality	'Acute'			Phosphorus status 'Deficient' Rate of gain (g / head / day)				'Marginal'			
		250	500	750	250	500	750	1000	250	500	750	1000
Steers & dry heifers												
300	Average	3	7	11	1	5	8	na	0	3	6	na
300	Good	1	4	7	0	2	5	8	0	0	2	6
500	Average	3	6	10	0	3	7	na	0	0	3	na
500	Good	0	2	6	0	0	1	5	0	0	0	1

Nil Liveweight gain assumed for breeders

Liveweight (kg)	Diet quality	Third term of pregnant	3 L milk / day	6 L milk / day	Third term of pregnant	3 L milk / day	6 L milk / day	Third term of pregnant	3 L milk / day	6 L milk / day
Breeders										
400	Average	4	4	7	1	1	4	0	0	2
400	Good	1	1	5	0	0	1	0	0	0

Recommendations

- > Feed P to growing stock during growing season only.
- > Feed N to breeders in early autumn on native pastures
- > Feed N to heifers and steers from late autumn on native pastures
- > No P supplementation for growing stock if they are loosing weight
- > Lactating breeders feed P in late dry season at half wet season rate

Common Ingredients Utilized in Lick Supplements

- > MDCP (Kynofos 21)
- > DCP
- > TCP
- > Rock Phosphate
 - Supply phosphorus
 - Varying bioavailability
 - Varying mixability
 - Huge pricing disparity

Salt

- > Supply Sodium and Chloride, needed d for bile production and hydrochloric acid production needed for digestion of fats and carbohydrates and proteins
- > Mature cow requires approx 11kg salt per year. inclusive of non supplemental salt
- > Commonly used in licks to control intake either up or down
- > Can be toxic in extreme cases, at intakes above 3kg/hd/day

Limestone

- > Supply calcium (Ca)
- > If P is being supplied from MDCP or DCP additional Ca is not required
- > Ca:P ratio of between 1.5-2:1 is recommended
- > Often added to licks in excess as limestone is cheap

Urea

- > Supply Nitrogen (N)
- > Contrary to common belief Urea is not protein. Urea is a simple N compound
- \succ Rumen microorganisms can convert N to ammonia which is converted to amino acids and microbial protein.
- \gt Urea can supply up to 1/3 of the total protein requirement of cattle. However at these levels sufficient fermentable energy must be supplied to allow utilization of available N

Urea		Microbial Urease		NH3 + CO2
Carbohydrates		Microbial Enzymes		VFA + Keto Acids
Keto Acids + NH3		Microbial Enzymes		Amino Acids
Amino Acids		Microbial Enzymes		Microbial Protein
Microbial Protein		Small Intestine Enzyme		Free Amino Acids

Free Amino Acids Absorbed

> Toxic dose generally regarded as 0.5 grams/kg LWT in a single feeding episode

Sulphate of Ammonia

- > Supply N as with urea. Contains approx $\frac{1}{2}$ the level of N as urea
- > Important source of Sulphur (5)
- > Sulphur required as a precursor to the production amino acids
- > N:S ratio should be in the range of 12-15:1
- > SOA often used to control intake (more bitter than urea)
- > More expensive source of N than urea

Elemental Sulphur

- > Source of **S**.
- > Less available source of **S** than SOA.

Protein Meal

- > Source of Rumen Escape Protein
- > Source of Energy to aid utilization of Urea.
- > Used to manipulate intake.
- > Commonly used meals include
 - Cotton Seed Meal 43%
 - ❖ Copra Meal 20%
 - ❖ Canola Meal 35%
 - Soybean meal 48%
 - ❖ PKF 15%
- > Very important to calculate the input cost of the protein.

Mineral Premix

- > Source of Micro minerals generally
 - Copper
 - * Zinc
 - * Manganese
 - Cobalt
 - * Iodine
 - *Selenium
- > Quite hard to establish micro mineral deficiencies. The inclusion of a mineral premix is very cheap insurance.(1-2c/cow/day)

Premix Manufacture considerations

- > Consideration needs to be given to the following criteria.
 - Mixability (Particle size variation)
 - Batch traceability
 - Batch to Batch accuracy
 - * Raw material storage and integrity
 - Product consistency from delivery to delivery